Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 615(7951): 305-314, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-2270582

RESUMO

Down's syndrome (DS) presents with a constellation of cardiac, neurocognitive and growth impairments. Individuals with DS are also prone to severe infections and autoimmunity including thyroiditis, type 1 diabetes, coeliac disease and alopecia areata1,2. Here, to investigate the mechanisms underlying autoimmune susceptibility, we mapped the soluble and cellular immune landscape of individuals with DS. We found a persistent elevation of up to 22 cytokines at steady state (at levels often exceeding those in patients with acute infection) and detected basal cellular activation: chronic IL-6 signalling in CD4 T cells and a high proportion of plasmablasts and CD11c+TbethighCD21low B cells (Tbet is also known as TBX21). This subset is known to be autoimmune-prone and displayed even greater autoreactive features in DS including receptors with fewer non-reference nucleotides and higher IGHV4-34 utilization. In vitro, incubation of naive B cells in the plasma of individuals with DS or with IL-6-activated T cells resulted in increased plasmablast differentiation compared with control plasma or unstimulated T cells, respectively. Finally, we detected 365 auto-antibodies in the plasma of individuals with DS, which targeted the gastrointestinal tract, the pancreas, the thyroid, the central nervous system, and the immune system itself. Together, these data point to an autoimmunity-prone state in DS, in which a steady-state cytokinopathy, hyperactivated CD4 T cells and ongoing B cell activation all contribute to a breach in immune tolerance. Our findings also open therapeutic paths, as we demonstrate that T cell activation is resolved not only with broad immunosuppressants such as Jak inhibitors, but also with the more tailored approach of IL-6 inhibition.


Assuntos
Autoimunidade , Linfócitos T CD4-Positivos , Citocinas , Síndrome de Down , Humanos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/análise , Citocinas/imunologia , Síndrome de Down/imunologia , Síndrome de Down/fisiopatologia , Interleucina-6/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Suscetibilidade a Doenças , Receptores de Complemento 3d , Autoanticorpos/imunologia
2.
Cell Death Dis ; 13(8): 741, 2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: covidwho-2016669

RESUMO

In addition to an inflammatory reaction, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-infected patients present lymphopenia, which we recently reported as being related to abnormal programmed cell death. As an efficient humoral response requires CD4 T-cell help, we hypothesized that the propensity of CD4 T cells to die may impact the quantity and quality of the humoral response in acutely infected individuals. In addition to specific immunoglobulins (Ig)A, IgM, and IgG against SARS-CoV-2 nucleocapsid (N), membrane (M), and spike (S1) proteins, we assessed the quality of IgG response by measuring the avidity index. Because the S protein represents the main target for neutralization and antibody-dependent cellular cytotoxicity responses, we also analyzed anti-S-specific IgG using S-transfected cells (S-Flow). Our results demonstrated that most COVID-19 patients have a predominant IgA anti-N humoral response during the early phase of infection. This specific humoral response preceded the anti-S1 in time and magnitude. The avidity index of anti-S1 IgG was low in acutely infected individuals compared to convalescent patients. We showed that the percentage of apoptotic CD4 T cells is inversely correlated with the levels of specific IgG antibodies. These lower levels were also correlated positively with plasma levels of CXCL10, a marker of disease severity, and soluble Fas ligand that contributes to T-cell death. Finally, we found lower S-Flow responses in patients with higher CD4 T-cell apoptosis. Altogether, these results demonstrate that individuals with high levels of CD4 T-cell apoptosis and CXCL10 have a poor ability to build an efficient anti-S response. Consequently, preventing CD4 T-cell death might be a strategy for improving humoral response during the acute phase, thereby reducing COVID-19 pathogenicity.


Assuntos
Anticorpos Antivirais , Linfócitos T CD4-Positivos , COVID-19 , Imunidade Humoral , Anticorpos Antivirais/imunologia , Apoptose , Linfócitos T CD4-Positivos/citologia , COVID-19/imunologia , Humanos , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
3.
Microbiol Spectr ; 10(1): e0084521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1709405

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the stimulatory levels of cellular-mediated immunity, which plays an essential role in controlling SARS-CoV-2 infection. In fact, several studies have shown the association of lymphopenia with severe COVID-19 in patients. The aim of this study is to investigate the response of the immune system, including cell-mediated immunity and antibody production, during different stages of SARS-CoV-2 infection. Peripheral blood and serum samples were collected from patients with moderate infection, patients under medication (hospitalized), patients who had recovered, and healthy individuals (n = 80). Flow cytometry analysis was performed on peripheral blood samples to determine the cellular immunity profile of each patient. The data showed a significant reduction in the levels of CD3+, CD4+, and CD8+ T cells and CD45+ cells in the moderate and under-medication groups, suggesting lymphopenia in those patients. Also, enzyme-linked immunosorbent assay (ELISA) was conducted on the serum samples to measure the levels of antibodies, including IgM and IgG, in each patient. The results revealed a significant increase in the levels of IgM in the moderate infection and under-medication patients, thus indicating the production of IgM during the first week of infection. Furthermore, changes in the levels of IgG were significantly detected among recovered patients, indicating therefore a remarkable increase during the recovery stage of SARS-CoV-2 infection and thus a strong humoral-mediated immunity. In summary, the results of this study may help us to understand the main role of the cellular immune responses, including CD3+, CD4+, and CD8+ T cells, against SARS-CoV-2 infection. This understanding might support the development of SARS-CoV-2 treatments and vaccines in the near future. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 in China. This virus is a serious threat to people not only in China but also worldwide, where it has been detected in over 222 countries. It has been reported that ∼3.4% of SARS-CoV-2-infected patients have died. The significance of our study relies on the fact that an enzyme-linked immunosorbent assay and flow cytometry were used to measure the levels of antibodies and cellular immune response, respectively, from clinical samples of patients infected with SARS-CoV-2.


Assuntos
Complexo CD3/sangue , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , COVID-19/imunologia , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
4.
Front Immunol ; 12: 740249, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1448730

RESUMO

Objective: To assess in rheumatoid arthritis (RA) patients, treated with different immunosuppressive therapies, the induction of SARS-CoV-2-specific immune response after vaccination in terms of anti-region-binding-domain (RBD)-antibody- and T-cell-specific responses against spike, and the vaccine safety in terms of clinical impact on disease activity. Methods: Health care workers (HCWs) and RA patients, having completed the BNT162b2-mRNA vaccination in the last 2 weeks, were enrolled. Serological response was evaluated by quantifying anti-RBD antibodies, while the cell-mediated response was evaluated by a whole-blood test quantifying the interferon (IFN)-γ-response to spike peptides. FACS analysis was performed to identify the cells responding to spike stimulation. RA disease activity was evaluated by clinical examination through the DAS28crp, and local and/or systemic clinical adverse events were registered. In RA patients, the ongoing therapeutic regimen was modified during the vaccination period according to the American College of Rheumatology indications. Results: We prospectively enrolled 167 HCWs and 35 RA patients. Anti-RBD-antibodies were detected in almost all patients (34/35, 97%), although the titer was significantly reduced in patients under CTLA-4-inhibitors (median: 465 BAU/mL, IQR: 103-1189, p<0.001) or IL-6-inhibitors (median: 492 BAU/mL, IQR: 161-1007, p<0.001) compared to HCWs (median: 2351 BAU/mL, IQR: 1389-3748). T-cell-specific response scored positive in most of RA patients [24/35, (69%)] with significantly lower IFN-γ levels in patients under biological therapy such as IL-6-inhibitors (median: 33.2 pg/mL, IQR: 6.1-73.9, p<0.001), CTLA-4-inhibitors (median: 10.9 pg/mL, IQR: 3.7-36.7, p<0.001), and TNF-α-inhibitors (median: 89.6 pg/mL, IQR: 17.8-224, p=0.002) compared to HCWs (median: 343 pg/mL, IQR: 188-756). A significant correlation between the anti-RBD-antibody titer and spike-IFN-γ-specific T-cell response was found in RA patients (rho=0.432, p=0.009). IFN-γ T-cell response was mediated by CD4+ and CD8+ T cells. Finally, no significant increase in disease activity was found in RA patients following vaccination. Conclusion: This study showed for the first time that antibody-specific and whole-blood spike-specific T-cell responses induced by the COVID-19 mRNA-vaccine were present in the majority of RA patients, who underwent a strategy of temporary suspension of immunosuppressive treatment during vaccine administration. However, the magnitude of specific responses was dependent on the immunosuppressive therapy administered. In RA patients, BNT162b2 vaccine was safe and disease activity remained stable.


Assuntos
Anticorpos Antivirais/imunologia , Artrite Reumatoide/terapia , Vacinas contra COVID-19/imunologia , Imunoterapia/efeitos adversos , Linfócitos T/imunologia , Idoso , Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , COVID-19/prevenção & controle , Feminino , Humanos , Interferon gama/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/citologia , Vacinas Sintéticas/imunologia
6.
Int J Med Sci ; 18(15): 3389-3394, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1409697

RESUMO

Current standard vaccine testing protocols take approximately 10-24 months of testing before a vaccine can be declared successful. Sometimes by the time a successful vaccine is out for public use, the outbreak may already be over. With no vaccine or antiviral drug available to treat the infected, we are left with the age-old methods of isolation, quarantine, and rest, to arrest such a viral outbreak. Convalescent blood therapy and covalent plasma therapy have often proved effective in reducing mortality, however, the role of innate and adaptive immune cells in these therapies have been overlooked. Antigen presenting cells (APCs), CD4+ T memory cells, CD8+ T memory cells, and memory B-Cells all play a vital role in sustainable defense and subsequent recovery. This report incorporates all these aspects by suggesting a novel treatment therapy called selective convalescent leukapheresis and transfusion (SCLT) and also highlights its potential in vaccination. The anticipated advantages of the proposed technique outweigh the cost, time, and efficiency of other available transfusion and vaccination processes. It is envisioned that in the future this new approach could serve as a rapid emergency response to subdue a pathogen outbreak and to stop it from becoming an epidemic, or pandemic.


Assuntos
COVID-19/terapia , Imunoterapia/métodos , Células Apresentadoras de Antígenos/citologia , Antivirais/uso terapêutico , Transfusão de Sangue , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Vacinas contra COVID-19 , Citocinas/metabolismo , Humanos , Imunização Passiva/métodos , Fatores Imunológicos , Leucaférese , Pandemias , SARS-CoV-2 , Soroterapia para COVID-19
8.
mBio ; 12(4): e0150321, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: covidwho-1327616

RESUMO

Severe coronavirus disease 2019 (COVID-19) has been associated with T cell lymphopenia, but no causal effect of T cell deficiency on disease severity has been established. To investigate the specific role of T cells in recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, we studied rhesus macaques that were depleted of either CD4+, CD8+, or both T cell subsets prior to infection. Peak virus loads were similar in all groups, but the resolution of virus in the T cell-depleted animals was slightly delayed compared to that in controls. The T cell-depleted groups developed virus-neutralizing antibody responses and class switched to IgG. When reinfected 6 weeks later, the T cell-depleted animals showed anamnestic immune responses characterized by rapid induction of high-titer virus-neutralizing antibodies, faster control of virus loads, and reduced clinical signs. These results indicate that while T cells play a role in the recovery of rhesus macaques from acute SARS-CoV-2 infections, their depletion does not induce severe disease, and T cells do not account for the natural resistance of rhesus macaques to severe COVID-19. Neither primed CD4+ nor CD8+ T cells appeared critical for immunoglobulin class switching, the development of immunological memory, or protection from a second infection. IMPORTANCE Patients with severe COVID-19 often have decreased numbers of T cells, a cell type important in fighting most viral infections. However, it is not known whether the loss of T cells contributes to severe COVID-19 or is a consequence of it. We studied rhesus macaques, which develop only mild COVID-19, similar to most humans. Experimental depletion of T cells slightly prolonged their clearance of virus, but there was no increase in disease severity. Furthermore, they were able to develop protection from a second infection and produced antibodies capable of neutralizing the virus. They also developed immunological memory, which allows a much stronger and more rapid response upon a second infection. These results suggest that T cells are not critical for recovery from acute SARS-CoV-2 infections in this model and point toward B cell responses and antibodies as the essential mediators of protection from re-exposure.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/patologia , Memória Imunológica/imunologia , Linfopenia/imunologia , SARS-CoV-2/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Feminino , Depleção Linfocítica/métodos , Macaca mulatta/imunologia , Masculino
9.
J Med Virol ; 93(3): 1589-1598, 2021 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1196482

RESUMO

A novel member of human coronavirus, named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has been recently recognized in China and rapidly spread worldwide. Studies showed the decreasing of peripheral blood lymphocytes in a majority of patients. In this study, we have reported the clinical features, laboratory characteristics, the frequency of peripheral blood lymphocyte subpopulations, and their apoptosis pattern in Iranian coronavirus infectious disease (COVID-19) patients. Demographic and clinical data of 61 hospitalized confirmed cases with COVID-19 at Imam Khomeini Hospital were collected and analyzed. Peripheral blood mononuclear cells were isolated from all samples and the apoptosis pattern was evaluated using Annexin V/propidium iodide method. The frequency of lymphocyte subsets, including T-CD4+ , T-CD8+ , NK, B cells, and monocytes, was measured in all patients and 31 controls by flow cytometry. Our findings demonstrated that the percentage of lymphocytes, CD4+ , and CD8+ T cells were decreased in COVID-19 patients compared with the control group. Regarding the clinical severity, the number of lymphocytes, CD4+ , CD8+ T cells, and NK cells were also decreased in severe cases when compared with mild cases. Finally, our data have also indicated the increase in apoptosis of mononuclear cells from COVID-19 patients which was more remarkable in severe clinical cases. The frequency of immune cells is a useful indicator for prediction of severity and prognosis of COVID-19 patients. These results could help to explain the immunopathogenesis of SARS-CoV-2 and introducing novel biomarkers, therapeutic strategies, and vaccine candidates.


Assuntos
Linfócitos B/citologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Imunofenotipagem/métodos , Células Matadoras Naturais/citologia , SARS-CoV-2/imunologia , Adulto , Idoso , Apoptose/imunologia , Biomarcadores/sangue , COVID-19/imunologia , Feminino , Citometria de Fluxo , Humanos , Irã (Geográfico) , Contagem de Linfócitos , Linfopenia/imunologia , Masculino , Pessoa de Meia-Idade
10.
mBio ; 12(2)2021 04 20.
Artigo em Inglês | MEDLINE | ID: covidwho-1195824

RESUMO

New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to gamma interferon (IFN-γ) or nutrient/oxygen deprivation of in vitro-infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analyzed their corresponding CD4 T cell phenotype and vaccine protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination, and against the overexpressing strain, vaccination with MPT70 conferred protection similar to vaccination with ESAT-6. Together, our data indicate that high in vivo antigen expression drives T cells toward terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune balance in favor of the host.IMPORTANCE Tuberculosis, caused by Mtb, constitutes a global health crisis of massive proportions and the impact of the current coronavirus disease 2019 (COVID-19) pandemic is expected to cause a rise in tuberculosis-related deaths. Improved vaccines are therefore needed more than ever, but a lack of knowledge on protective immunity hampers their development. The present study shows that constitutively expressed antigens with high availability drive highly differentiated CD4 T cells with diminished protective capacity, which could be a survival strategy by Mtb to evade T cell immunity against key antigens. We demonstrate that immunization with such antigens can counteract this phenomenon by maintaining antigen-specific T cells in a state of low differentiation. Future vaccine strategies should therefore explore combinations of multiple highly expressed antigens and we suggest that T cell differentiation could be used as a readily measurable parameter to identify these in both preclinical and clinical studies.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/farmacologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/microbiologia , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Expressão Gênica , Genes Bacterianos , Humanos , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/microbiologia
11.
Nature ; 594(7862): 253-258, 2021 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1192479

RESUMO

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Assuntos
Adjuvantes Imunológicos , Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas de Subunidades/imunologia , Compostos de Alúmen , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , COVID-19/virologia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Modelos Animais de Doenças , Imunidade Celular , Imunidade Humoral , Macaca mulatta/imunologia , Masculino , Oligodesoxirribonucleotídeos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Esqualeno
12.
Cell Res ; 31(3): 272-290, 2021 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1039635

RESUMO

How the innate and adaptive host immune system miscommunicate to worsen COVID-19 immunopathology has not been fully elucidated. Here, we perform single-cell deep-immune profiling of bronchoalveolar lavage (BAL) samples from 5 patients with mild and 26 with critical COVID-19 in comparison to BALs from non-COVID-19 pneumonia and normal lung. We use pseudotime inference to build T-cell and monocyte-to-macrophage trajectories and model gene expression changes along them. In mild COVID-19, CD8+ resident-memory (TRM) and CD4+ T-helper-17 (TH17) cells undergo active (presumably antigen-driven) expansion towards the end of the trajectory, and are characterized by good effector functions, while in critical COVID-19 they remain more naïve. Vice versa, CD4+ T-cells with T-helper-1 characteristics (TH1-like) and CD8+ T-cells expressing exhaustion markers (TEX-like) are enriched halfway their trajectories in mild COVID-19, where they also exhibit good effector functions, while in critical COVID-19 they show evidence of inflammation-associated stress at the end of their trajectories. Monocyte-to-macrophage trajectories show that chronic hyperinflammatory monocytes are enriched in critical COVID-19, while alveolar macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, are depleted. In critical COVID-19, monocytes contribute to an ATP-purinergic signaling-inflammasome footprint that could enable COVID-19 associated fibrosis and worsen disease-severity. Finally, viral RNA-tracking reveals infected lung epithelial cells, and a significant proportion of neutrophils and macrophages that are involved in viral clearance.


Assuntos
Imunidade Adaptativa , Lavagem Broncoalveolar , COVID-19/diagnóstico , COVID-19/imunologia , Imunidade Inata , Análise de Célula Única , Líquido da Lavagem Broncoalveolar , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Comunicação Celular , Perfilação da Expressão Gênica , Humanos , Pulmão/virologia , Macrófagos Alveolares/citologia , Monócitos/citologia , Neutrófilos/citologia , Fenótipo , Análise de Componente Principal , RNA-Seq , Células Th17/citologia
13.
BMC Infect Dis ; 21(1): 57, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: covidwho-1024357

RESUMO

BACKGROUND: In December 2019, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, Hubei, China. Moreover, it has become a global pandemic. This is of great value in describing the clinical symptoms of COVID-19 patients in detail and looking for markers which are significant to predict the prognosis of COVID-19 patients. METHODS: In this multicenter, retrospective study, 476 patients with COVID-19 were enrolled from a consecutive series. After screening, a total of 395 patients were included in this study. All-cause death was the primary endpoint. All patients were followed up from admission till discharge or death. RESULTS: The main symptoms observed in the study included fever on admission, cough, fatigue, and shortness of breath. The most common comorbidities were hypertension and diabetes mellitus. Patients with lower CD4+T cell level were older and more often male compared to those with higher CD4+T cell level. Reduced CD8+T cell level was an indicator of the severity of COVID-19. Both decreased CD4+T [HR:13.659; 95%CI: 3.235-57.671] and CD8+T [HR: 10.883; 95%CI: 3.277-36.145] cell levels were associated with in-hospital death in COVID-19 patients, but only the decrease of CD4+T cell level was an independent predictor of in-hospital death in COVID-19 patients. CONCLUSIONS: Reductions in lymphocytes and lymphocyte subsets were common in COVID-19 patients, especially in severe cases of COVID-19. It was the CD8+T cell level, not the CD4+T cell level, that reflected the severity of the patient's disease. Only reduced CD4+T cell level was independently associated with increased in-hospital death in COVID-19 patients. TRIAL REGISTRATION: Prognostic Factors of Patients With COVID-19, NCT04292964 . Registered 03 March 2020. Retrospectively registered.


Assuntos
Linfócitos T CD4-Positivos/citologia , COVID-19/sangue , SARS-CoV-2/imunologia , Adulto , Idoso , Linfócitos T CD8-Positivos/citologia , COVID-19/diagnóstico , COVID-19/mortalidade , COVID-19/terapia , Comorbidade , Feminino , Seguimentos , Hospitalização , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Pandemias , Alta do Paciente , Prognóstico , Estudos Retrospectivos , SARS-CoV-2/genética
14.
EBioMedicine ; 63: 103197, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: covidwho-1014450

RESUMO

BACKGROUND: SARS-CoV-2 has caused a global pandemic, infecting millions of people. A safe, effective vaccine is urgently needed and remains a global health priority. Subunit vaccines are used successfully against other viruses when administered in the presence of an effective adjuvant. METHODS: We evaluated three different clinically tested adjuvant systems in combination with the SARS-CoV-2 pre-fusion stabilized (S-2P) spike protein using a one-dose regimen in mice. FINDINGS: Whilst spike protein alone was only weakly immunogenic, the addition of either Aluminum hydroxide, a squalene based oil-in-water emulsion system (SE) or a cationic liposome-based adjuvant significantly enhanced antibody responses against the spike receptor binding domain (RBD). Kinetics of antibody responses differed, with SE providing the most rapid response. Neutralizing antibodies developed after a single immunization in all adjuvanted groups with ID50 titers ranging from 86-4063. Spike-specific CD4 T helper responses were also elicited, comprising mainly of IFN-γ and IL-17 producing cells in the cationic liposome adjuvanted group, and more IL-5- and IL-10-secreting cells in the AH group. INTERPRETATION: These results demonstrate that adjuvanted spike protein subunit vaccine is a viable strategy for rapidly eliciting SARS-CoV-2 neutralizing antibodies and CD4 T cell responses of various qualities depending on the adjuvant used, which can be explored in further vaccine development against COVID-19. FUNDING: This work was supported by the European Union Horizon 2020 research and innovation program under grant agreement no. 101003653.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Linfócitos T CD4-Positivos/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , COVID-19/patologia , COVID-19/virologia , Feminino , Imunização , Interferon gama/metabolismo , Interleucina-17/metabolismo , Lipossomos/química , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Esqualeno/química , Vacinas de Subunidades/imunologia
15.
Cells ; 9(12)2020 12 05.
Artigo em Inglês | MEDLINE | ID: covidwho-967600

RESUMO

Cell response to novel coronavirus disease 19 (COVID-19) is currently a widely researched topic. The assessment of leukocytes population and the maturation of both B and T lymphocytes may be important in characterizing the immunological profile of COVID-19 patients. The aim of the present study was to evaluate maturation of B and T cells in COVID-19 patients with interstitial lesions on chest X-ray (COVID-19 X-ray (+)), without changes on X-ray (COVID-19 X-ray (-)) and in healthy control. The study group consisted of 23 patients divided on two groups: COVID-19 X-ray (+) n = 14 and COVID-19 X-ray (-) n = 9 and control n = 20. The flow cytometry method was performed. We observed a significantly higher percentage of plasmablasts and lower CD4+ lymphocytes in COVID-19 X-ray (+) patients than in COVID-19 X-ray (-) and control. In the COVID-19 X-ray (+) patients, there was a lower proportion of effector CD4+ T cells, naïve CD8+ T cells and higher central memory CD4+ cells and effector CD8+ T cells than control. The above results showed that the assessment of selected cells of B and T lymphocytes by flow cytometry can distinguish patients with COVID-19 and differentiate patients with and without changes on chest X-ray.


Assuntos
Linfócitos B/citologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , COVID-19/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , COVID-19/virologia , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação
16.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L84-L98, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: covidwho-910283

RESUMO

Coronavirus disease 2019 (COVID-19), driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a global pandemic in March 2020. Pathogenic T cells and inflammatory monocytes are regarded as the central drivers of the cytokine storm associated with the severity of COVID-19. In this study, we explored the characteristic peripheral cellular profiles of patients with COVID-19 in both acute and convalescent phases by single-cell mass cytometry (CyTOF). Using a combination of algorithm-guided data analyses, we identified peripheral immune cell subsets in COVID-19 and revealed CD4+ T-cell depletion, T-cell differentiation, plasma cell expansion, and the reduced antigen presentation capacity of innate immunity. Notably, COVID-19 induces a dysregulation in the balance of monocyte populations by the expansion of the monocyte subsets. Collectively, our results represent a high-dimensional, single-cell profile of the peripheral immune response to SARS-CoV-2 infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Leucócitos Mononucleares/imunologia , Monócitos/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/citologia , COVID-19/patologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/patologia , Citocinas/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Feminino , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/citologia , Depleção Linfocítica , Masculino , Pessoa de Meia-Idade , Monócitos/citologia , Plasmócitos/citologia , Análise de Célula Única
17.
Sci Rep ; 10(1): 17718, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: covidwho-880700

RESUMO

COVID-19 has been widely spreading. We aimed to examine adaptive immune cells in non-severe patients with persistent SARS-CoV-2 shedding. 37 non-severe patients with persistent SARS-CoV-2 presence that were transferred to Zhongnan hospital of Wuhan University were retrospectively recruited to the PP (persistently positive) group, which was further allocated to PPP group (n = 19) and PPN group (n = 18), according to their testing results after 7 days (N = negative). Epidemiological, demographic, clinical and laboratory data were collected and analyzed. Data from age- and sex-matched non-severe patients at disease onset (PA [positive on admission] patients, n = 37), and lymphocyte subpopulation measurements from matched 54 healthy subjects were extracted for comparison (HC). Compared with PA patients, PP patients had much improved laboratory findings. The absolute numbers of CD3+ T cells, CD4+ T cells, and NK cells were significantly higher in PP group than that in PA group, and were comparable to that in healthy controls. PPP subgroup had markedly reduced B cells and T cells compared to PPN group and healthy subjects. Finally, paired results of these lymphocyte subpopulations from 10 PPN patients demonstrated that the number of T cells and B cells significantly increased when the SARS-CoV-2 tests turned negative. Persistent SARS-CoV-2 presence in non-severe COVID-19 patients is associated with reduced numbers of adaptive immune cells. Monitoring lymphocyte subpopulations could be clinically meaningful in identifying fully recovered COVID-19 patients.


Assuntos
Linfócitos B/citologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Linfócitos T/citologia , Adulto , Linfócitos B/imunologia , Linfócitos B/metabolismo , Betacoronavirus/isolamento & purificação , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , COVID-19 , Estudos de Casos e Controles , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
Nucleic Acids Res ; 48(19): 10890-10908, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: covidwho-817440

RESUMO

Although endogenous retroviruses (ERVs) are known to harbor cis-regulatory elements, their role in modulating cellular immune responses remains poorly understood. Using an RNA-seq approach, we show that several members of the ERV9 lineage, particularly LTR12C elements, are activated upon HIV-1 infection of primary CD4+ T cells. Intriguingly, HIV-1-induced ERVs harboring transcription start sites are primarily found in the vicinity of immunity genes. For example, HIV-1 infection activates LTR12C elements upstream of the interferon-inducible genes GBP2 and GBP5 that encode for broad-spectrum antiviral factors. Reporter assays demonstrated that these LTR12C elements drive gene expression in primary CD4+ T cells. In line with this, HIV-1 infection triggered the expression of a unique GBP2 transcript variant by activating a cryptic transcription start site within LTR12C. Furthermore, stimulation with HIV-1-induced cytokines increased GBP2 and GBP5 expression in human cells, but not in macaque cells that naturally lack the GBP5 gene and the LTR12C element upstream of GBP2. Finally, our findings suggest that GBP2 and GBP5 have already been active against ancient viral pathogens as they suppress the maturation of the extinct retrovirus HERV-K (HML-2). In summary, our findings uncover how human cells can exploit remnants of once-infectious retroviruses to regulate antiviral gene expression.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Retrovirus Endógenos/genética , Regulação da Expressão Gênica/imunologia , Infecções por HIV/genética , Regiões Promotoras Genéticas , Subpopulações de Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Células HEK293 , Infecções por HIV/imunologia , HIV-1 , Humanos , Macaca mulatta , Subpopulações de Linfócitos T/citologia
19.
Cell ; 183(4): 996-1012.e19, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: covidwho-764348

RESUMO

Limited knowledge is available on the relationship between antigen-specific immune responses and COVID-19 disease severity. We completed a combined examination of all three branches of adaptive immunity at the level of SARS-CoV-2-specific CD4+ and CD8+ T cell and neutralizing antibody responses in acute and convalescent subjects. SARS-CoV-2-specific CD4+ and CD8+ T cells were each associated with milder disease. Coordinated SARS-CoV-2-specific adaptive immune responses were associated with milder disease, suggesting roles for both CD4+ and CD8+ T cells in protective immunity in COVID-19. Notably, coordination of SARS-CoV-2 antigen-specific responses was disrupted in individuals ≥ 65 years old. Scarcity of naive T cells was also associated with aging and poor disease outcomes. A parsimonious explanation is that coordinated CD4+ T cell, CD8+ T cell, and antibody responses are protective, but uncoordinated responses frequently fail to control disease, with a connection between aging and impaired adaptive immune responses to SARS-CoV-2.


Assuntos
Imunidade Adaptativa , Antígenos Virais/imunologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , Betacoronavirus/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Índice de Gravidade de Doença , Adulto Jovem
20.
EBioMedicine ; 57: 102885, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-633885

RESUMO

BACKGROUND: Elucidating the role of T cell responses in COVID-19 is of utmost importance to understand the clearance of SARS-CoV-2 infection. METHODS: 30 hospitalized COVID-19 patients and 60 age- and gender-matched healthy controls (HC) participated in this study. We used two comprehensive 11-colour flow cytometric panels conforming to Good Laboratory Practice and approved for clinical diagnostics. FINDINGS: Absolute numbers of lymphocyte subsets were differentially decreased in COVID-19 patients according to clinical severity. In severe disease (SD) patients, all lymphocyte subsets were reduced, whilst in mild disease (MD) NK, NKT and γδ T cells were at the level of HC. Additionally, we provide evidence of T cell activation in MD but not SD, when compared to HC. Follow up samples revealed a marked increase in effector T cells and memory subsets in convalescing but not in non-convalescing patients. INTERPRETATION: Our data suggest that activation and expansion of innate and adaptive lymphocytes play a major role in COVID-19. Additionally, recovery is associated with formation of T cell memory as suggested by the missing formation of effector and central memory T cells in SD but not in MD. Understanding T cell-responses in the context of clinical severity might serve as foundation to overcome the lack of effective anti-viral immune response in severely affected COVID-19 patients and can offer prognostic value as biomarker for disease outcome and control. FUNDING: Funded by State of Lower Saxony grant 14-76,103-184CORONA-11/20 and German Research Foundation, Excellence Strategy - EXC2155"RESIST"-Project ID39087428, and DFG-SFB900/3-Project ID158989968, grants SFB900-B3, SFB900-B8.


Assuntos
Betacoronavirus/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Coronavirus/imunologia , Ativação Linfocitária/imunologia , Pneumonia Viral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , COVID-19 , Feminino , Humanos , Memória Imunológica/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Pandemias , Prognóstico , SARS-CoV-2 , Índice de Gravidade de Doença , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA